Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 111(2): 348-359, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35603461

RESUMO

Quantifying root water uptake is essential to understanding plant water use and responses to different environmental conditions. However, non-destructive measurement of water transport and related hydraulics in the soil-root system remains a challenge. Neutron imaging, with its high sensitivity to hydrogen, has become an unparalleled tool to visualize and quantify root water uptake in vivo. In combination with isotopes (e.g., deuterated water) and a diffusion-convection model, root water uptake and hydraulic redistribution in root and soil can be quantified. Here, we review recent advances in utilizing neutron imaging to visualize and quantify root water uptake, hydraulic redistribution in roots and soil, and root hydraulic properties of different plant species. Under uniform soil moisture distributions, neutron radiographic studies have shown that water uptake was not uniform along the root and depended on both root type and age. For both tap (e.g., lupine [Lupinus albus L.]) and fibrous (e.g., maize [Zea mays L.]) root systems, water was mainly taken up through lateral roots. In mature maize, the location of water uptake shifted from seminal roots and their laterals to crown/nodal roots and their laterals. Under non-uniform soil moisture distributions, part of the water taken up during the daytime maintained the growth of crown/nodal roots in the upper, drier soil layers. Ultra-fast neutron tomography provides new insights into 3D water movement in soil and roots. We discuss the limitations of using neutron imaging and propose future directions to utilize neutron imaging to advance our understanding of root water uptake and soil-root interactions.


Assuntos
Lupinus , Água , Transporte Biológico , Nêutrons , Raízes de Plantas , Solo , Água/fisiologia , Zea mays
2.
Sci Rep ; 11(1): 10578, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012044

RESUMO

Root water uptake is an essential process for terrestrial plants that strongly affects the spatiotemporal distribution of water in vegetated soil. Fast neutron tomography is a recently established non-invasive imaging technique capable to capture the 3D architecture of root systems in situ and even allows for tracking of three-dimensional water flow in soil and roots. We present an in vivo analysis of local water uptake and transport by roots of soil-grown maize plants-for the first time measured in a three-dimensional time-resolved manner. Using deuterated water as tracer in infiltration experiments, we visualized soil imbibition, local root uptake, and tracked the transport of deuterated water throughout the fibrous root system for a day and night situation. This revealed significant differences in water transport between different root types. The primary root was the preferred water transport path in the 13-days-old plants while seminal roots of comparable size and length contributed little to plant water supply. The results underline the unique potential of fast neutron tomography to provide time-resolved 3D in vivo information on the water uptake and transport dynamics of plant root systems, thus contributing to a better understanding of the complex interactions of plant, soil and water.

3.
Opt Express ; 27(20): 28640-28648, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684612

RESUMO

Here, we report on a new record in the acquisition time for fast neutron tomography. With an optimized imaging setup, it was possible to acquire single radiographic projection images with 10 ms and full tomographies with 155 projections images and a physical spatial resolution of 200 µm within 1.5 s. This is about 6.7 times faster than the current record. We used the technique to investigate the water infiltration in the soil with a living lupine root system. The fast imaging setup will be part of the future NeXT instrument at ILL in Grenoble with a great field of possible future applications.


Assuntos
Nêutrons , Tomografia , Lupinus/fisiologia , Raízes de Plantas/fisiologia , Intensificação de Imagem Radiográfica , Solo
4.
Plant Cell Environ ; 42(5): 1645-1656, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30506732

RESUMO

Most epiphytic bromeliads, especially those in the genus Tillandsia, lack functional roots and rely on the absorption of water and nutrients by large, multicellular trichomes on the epidermal surfaces of leaves and stems. Another important function of these structures is the spread of water over the epidermal surface by capillary action between trichome "wings" and epidermal surface. Although critical for the ultimate absorption by these plants, understanding of this function of trichomes is primarily based on light microscope observations. To better understand this phenomenon, the distribution of water was followed by its attenuation of cold neutrons following application of H2 O to the cut end of Tillandsia usneoides shoots. Experiments confirmed the spread of added water on the external surfaces of this "atmospheric" epiphyte. In a morphologically and physiologically similar plant lacking epidermal trichomes, water added to the cut end of a shoot clearly moved via its internal xylem and not on its epidermis. Thus, in T. usneoides, water moves primarily by capillarity among the overlapping trichomes forming a dense indumentum on shoot surfaces, while internal vascular water movement is less likely. T. usneoides, occupying xeric microhabitats, benefits from reduction of water losses by low-shoot xylem hydraulic conductivities.


Assuntos
Tillandsia , Tricomas/fisiologia , Água/fisiologia , Transporte Biológico , Desidratação
5.
Sci Rep ; 7(1): 6192, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28733616

RESUMO

Water infiltration in soil is not only affected by the inherent heterogeneities of soil, but even more by the interaction with plant roots and their water uptake. Neutron tomography is a unique non-invasive 3D tool to visualize plant root systems together with the soil water distribution in situ. So far, acquisition times in the range of hours have been the major limitation for imaging 3D water dynamics. Implementing an alternative acquisition procedure we boosted the speed of acquisition capturing an entire tomogram within 10 s. This allows, for the first time, tracking of a water front ascending in a rooted soil column upon infiltration of deuterated water time-resolved in 3D. Image quality and resolution could be sustained to a level allowing for capturing the root system in high detail. Good signal-to-noise ratio and contrast were the key to visualize dynamic changes in water content and to localize the root uptake. We demonstrated the ability of ultra-fast tomography to quantitatively image quick changes of water content in the rhizosphere and outlined the value of such imaging data for 3D water uptake modelling. The presented method paves the way for time-resolved studies of various 3D flow and transport phenomena in porous systems.

6.
Ann Bot ; 111(4): 723-30, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23393096

RESUMO

BACKGROUND AND AIMS: Cold neutron radiography was applied to directly observe embolism in conduits of liana stems with the aim to evaluate the suitability of this method for studying embolism formation and repair. Potential advantages of this method are a principally non-invasive imaging approach with low energy dose compared with synchrotron X-ray radiation, a good spatial and temporal resolution, and the possibility to observe the entire volume of stem portions with a length of several centimetres at one time. METHODS: Complete and cut stems of Adenia lobata, Aristolochia macrophylla and Parthenocissus tricuspidata were radiographed at the neutron imaging facility CONRAD at the Helmholtz-Zentrum Berlin für Materialien und Energie, with each measurement cycle lasting several hours. Low attenuation gas spaces were separated from the high attenuation (water-containing) plant tissue using image processing. KEY RESULTS: Severe cuts into the stem were necessary to induce embolism. The formation and temporal course of an embolism event could then be successfully observed in individual conduits. It was found that complete emptying of a vessel with a diameter of 100 µm required a time interval of 4 min. Furthermore, dehydration of the whole stem section could be monitored via decreasing attenuation of the neutrons. CONCLUSIONS: The results suggest that cold neutron radiography represents a useful tool for studying water relations in plant stems that has the potential to complement other non-invasive methods.


Assuntos
Radiografia/métodos , Xilema/anatomia & histologia , Aristolochia/anatomia & histologia , Aristolochia/crescimento & desenvolvimento , Nêutrons , Caules de Planta , Vitaceae/anatomia & histologia , Vitaceae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...